A three‐level time‐split MacCormack method for two‐dimensional nonlinear reaction‐diffusion equations
نویسندگان
چکیده
منابع مشابه
A MODIFIED STEFFENSEN'S METHOD WITH MEMORY FOR NONLINEAR EQUATIONS
In this note, we propose a modification of Steffensen's method with some free parameters. These parameters are then be used for further acceleration via the concept of with memorization. In this way, we derive a fast Steffensen-type method with memory for solving nonlinear equations. Numerical results are also given to support the underlying theory of the article.
متن کاملA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملA SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملA NOTE ON "A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS"
In this study, we modify an iterative non-optimal without memory method, in such a way that is becomes optimal. Therefore, we obtain convergence order eight with the some functional evaluations. To justify our proposed method, some numerical examples are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2020
ISSN: 0271-2091,1097-0363
DOI: 10.1002/fld.4844